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Application of the Linear Isotherm Regularity to 
Selected Fluid Systems 

S. Alavi 2 

Dense hard-sphere and Lennard-Jones fluids and also liquid mercury and water 
are studied to see if they obey the linear isotherm regularity suggested by 
Parsa, far and Mason. For dense hard-sphere fluids a behavior consistent with 
the regularity is observed. Data from simulations of the Lennard Jones fluid 
were observed to follow the trends proposed by the regularity. For mercury, 
agreement between the experimental data and the predictions of the regularity 
is obtained. This suggests that the scope of the regularity can be extended to 
include liquid metals. In the case of water, Ibr pressure ranges that are not too 
large, quantitative agreement with the predictions of the regtdarity can be 
obtained. Over larger ranges of pressure, systematic deviations appear, but the 
agreement is still satislactory. Based on the model previously proposed for the 
regularity, a discussion of some aspects of the parameters in the equation is 
given. 

KEY WORDS: dense fluids: hard-sphere lluid: Lennard-Jones fluid: linear 
isotherm regularity: mercury: water. 

1. INTRODUCTION 

A general regularity has recently been reported for supercritical and sub- 
critical dense fluids [ 1 ]. This regularity, which is equivalent to an equation 
of state, was shown to be valid for a wide range of fluids including non- 
polar, polar, quantum, and weakly hydrogen-bonded fluids, as well as fluid 
mixtures [2] .  With this equation of state, a number of previously known 
regularities were reproduced and some new regularities predicted, with 
physical interpretations given for each case [3].  Selected thermophysical 
properties were also studied [4].  
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The regularity states that isotherms of ( Z -  1 ) v -~ are linear with p2 

( Z -  1) c2= A + Bp 2 (1) 

where Z = pv/RT is the compressibility factor and p = 1/v is the molar den- 
sity of the fluid. A and B are parameters with a temperature dependence 
given by 

A = A , - A I / R T  (2) 

and 

B = B I / R T  (3) 

where A,,  A ~, and B~ are constants depending on the nature and composi- 
tion of the dense fluid. 

The regularity was noticed to be valid for densities larger than the 
Boyle density and temperatures fi'om the triple point to approximately 
twice the Boyle temperature. This includes most of the liquid region and 
regions of the dense supercritical fluid near the solid phase of the phase 
diagram. 

In this paper, a number of fluid systems not studied previously are 
examined to see if they can be incorporated into the scheme of the 
regularity. These systems are hard-sphere and Lennard-Jones fluids, 
mercury, and water. 

2. SUMMARY OF THE M O D E L  

For completeness, a summary of the model proposed to mimic the 
linearity of ( Z -  1 ) c "2 against p2 is given. Further details are provided in 
Ref. I. 

The starting point is the thermodynamic equation of state, 

p = r  - ? - p  
\ ~ /~  7" 

(4) 

internal where T(Op/OT),, is the thermal pressure and (OE/OV)- r the 
pressure of the fluid. 

To obtain an expression for the internal pressure, a simple model of 
the internal energy of the system is used. It is assumed that the kinetic 
energy is independent of the volume and thus does not contribute to the 
internal pressure. The potential energy of the system is taken to consist of 
only pairwise additive nearest-neighbor interactions, with the number of 
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nearest neighbors being proportional to the density of the fluid. In order to 
obtain the isotherm regularity given by Eq. (1 l, the pair interaction was 
required to have the tbrm of C,,/r ~ - C3/r 3. Substituting these results into 
the thermodynamic equation of state and rearranging, one obtains 

( Z _  l ) v  2 _ R - T + ~ P - A ~  B~ ~+ 1~ I l- (~P~,, -1]p-Lp~\O~/] (5) 

A~ and B~ are related, respectively, to the contributions of attraction and 
repulsion to the internal pressure, and the final term on the right is the 
nonideal contribution to the thermal pressure. It was argued that this term 
is slowly varying for Ar in the density range of interest. The corresponding 
term for the van tier Waals equation, b/[ p( 1 - bp)] ,  gives an indication of 
why this should be so. This term becomes infinite at low densities where 
p---, 0, and at high densities as bp --, 1, but is a slowly varying function at 
intermediate values, especially near the minimum, bp = 1/2. If this term is 
taken to be constant and designated by A 2, Eq. (1) is obtained. 

The insensitivity of the linearity to the form of the pair potential is not 
apparent from this model but is indicated from studies of the predictions 
of the van der Waals and the accurate Ihm-Song-Mason equations of 
state, each of which is based on different models for effective intermolecular 
potentials [5, 6]. Thus it is seen that the linearity arises as a result of the 
balance of attractive and repulsive forces in the density and temperature 
range of interest and is not sensitive to the particular form of the forces. 
This illustrates why the regularity should hold for such a variety of fluids 
despite their widely different intermolecular potentials. 

3. HARD-SPHERE FLUID 

The Carnahan-Starling equation of state gives an essentially exact 
representation of hard-sphere fluid behavior over the entire range of fluid 
densities [7] .  In terms of the molar density, this equation is given by 

l 4-ocp 4- ( ~ p ) 2  _ (a .p )3  
Z = - ( 6 )  

(1 _~p)3 

where ~ = ~d3NA/6 ,  NA being Avogadro's number and d the molecular 

diameter. 
It is not obvious that this equation can be rearranged to give that 

( Z -  1 ) v 2 is linear with p2. On the other hand, from the point of view of 
the model stated in Sect. 2, the linearity of ( Z -  1 ) e 2 against p'- isotherms 
is a result of the balance of attractive and repulsive forces. In a hard-sphere 



fluid there are no two body attractions, but due to the presence of a poten- 
tial of mean force, an effective attraction between two molecules may be 
seen. Thus it may be possible to find behavior consistent with Eq. ( 1 ). 

In a hard-sphere fluid, as in the general case of Sect. 2, the kinetic 
energy is assumed to be independent of volume. The potential energy is 
also independent of volume in this case, and (OE/OV)T=0 for a hard- 
sphere tluid. Therefore, in the thermodynamic equation of state, deviations 
from ideality arise fi'om nonideal contributions to the thermal pressure. For 
hard-spheres Eq. (5) is thus given by 

111(  / ] 42 p ( Z - l )  - ( ~ p ) ,  ~ ~ p--1 =cxp(l_~p)3 (7) 

300 

As mentioned, for Ar and the van der Waals equation, the nonideal 
contribution to the thermal pressure is relatively constant in the range of 
density and temperature which the linear regularity holds. Equation (7) is 
plotted in Fig. 1. It can be seen that the resulting function is relatively 
constant in the intermediate density region, in the vicinity of the minimum 
[at (~p)2 ~ 0.078]. 

Hard-spheres have only one fluid phase and have no Boyle temperature. 
The closest packing density tbr hard spheres lies at ap = 0.74 [ (cxp)-" = 0.55 ] 
and crystallization for a hard-sphere fluid occurs at ~p = 0.49 [ (cxp)2 = 0.25 ] 

Fig. 1. 
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[8] .  Therefore, in a limited dense fluid region of (c~p)-'=0.05 to 0.2, a 
reasonable approximation for a hard-sphere fluid would be 

( Z -  1) ~2=A~ (8) 

where A, is a positive temperature-independent constant representing the 
nonideal contribution to the thermal pressure. 

The behavior of ( Z - 1 ) t ,  2 against p2 for hard spheres, shown in 
Fig. 1, is comparable to the high-temperature behavior of the same func- 
tion for the van der Waals and Ihm-Song-Mason equations, as shown in 
Figs. 7 and 8 of Ref. 1, where, due to repulsion, ( Z -  1 ) v 2 has divergences 
at the high and low density limits, but at intermediate densities a region of 
relative constancy is seen. Equation (5) shows that at high temperatures, 
nonideal thermal pressure effects will dominate over internal pressure 
effects, and so these systems will show similar behavior. 

4. L E N N A R D - J O N E S  FLUID 

At temperatures that are not too low, argon is considered to a good 
approximation to be a Lennard-Jones fluid [8].  Thus it is reasonable to 
expect that like argon, Lennard-Jones fluids will tbllow the linear isotherm 
regularity, Simulation results for Lennard-Jones fluids are available and 
this assumption can be studied directly. Moreover, simulations may extend 
into regions where experimental data are difficult to obtain or nonexistent. 

The phase diagram of the Lennard-Jones fluid is known [8].  The 
critical temperature and density of the Lennard-Jones fluid are at T* = 
1.36 and p*=0 .36 ,  where T*=kT/e and p*=Na3/I/. The triple-point 
temperature and density are T~ = 0.68 +_ 0.02, and p'p=0.85+_0.01. The 
Boyle temperature and density of a Lennard-Jones fluid may be obtained 
from Hirschfelder et al. [9] .  The values are T * =  3.42 and p*=0.4.  

Some values of reduced pressure and density of a Lennard-Jones 
liquM have been given for selected isotherms by McDonald and Singer 
[10].  A number of these isotherms are plotted as (Z-1l (v*)-"  against 
(p , )2  in Fig. 2. Good linearity is obtained and the random deviations 
observed are likely due to simulation results. The temperature dependence 
of the slopes and intercepts can be obtained and are represented to a good 

extent by Eqs. (2l and (3). 
Simulation results [ 11, 12 ] for ( Z -  1 )(L'* t 2 against (p*)2 isotherms 

from T* = 0.75 to T* = 100 are shown in Fig. 3. The high-density regions 
of the curves extend to about the freezing line (the full extent of the two 
high-temperature isotherms has not been shown), and both subcritical and 
supercritical temperatures are included. At low densities, the low-tern- 
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perature isotherms diverge to negative values. For high-temperature 
isotherms, the low-density behavior indicates a divergence to positive 
values. This behavior is consistent with that of the van der Waals and Ihm 
Sing-Mason equations of state discussed in Ref. 1. 

The linear regions of the curves in Fig. 3, where densities are higher 
than the Boyle density are plotted separately in Fig. 4. The fit of the points 
to the lines does not meet the standard set in Ref. 1 of r-'>~ 0.995, with r 
being the correlation coefficient, bt, t this may again be related to random 
errors in simulation results and the small number of points available for 
each isotherm. In Ref. 1, it was stated that the linearity is valid for p >p~  
and T <  2T~. The range of densities for which the linearity is valid for the 
Lennard-Jones fluid agrees with this range, but qualitatively at least, it 
appears that the linearity holds for a even larger range of temperatures. 

The slopes and intercepts of the lines in Fig. 4, along with their one 
standard deviation error limits, are given in Table I. These values are 
plotted against l/T* in Fig. 5, and they can be seen to confirm to Eqs. (2) 
and (3). The approximate zero slope of the highest-temperature curve in 
Fig. 4 and, hence, the approximate zero intercept of the slope parameter 
are predicted by Eq. (3l. 

5. M E R C U R Y  

The linearity of isotherms of liquid metals was not studied in previous 
work. With the data of Grindley and Lind [ 131 for liquid mercury, ( Z -  1) 
(r/v~.) -~ was plotted against (p/p~.)e for different isotherms in Fig. 6. The 

T a b l e  I. R e d u c e d  I n t e r c e p t  A a n d  S l o p e  B P a r a m e t e r s  of I Z -  I)l r *  I - ' =  A + BI/7* )-" fo r  a 

L e n n a r d - . I o n e s  F l u i d  

k T ~z A B J p  *" 

(I.75 ~' - 16.24 +__ 0 .06  21 .7  +__ 0. I 0 .017  I).23 

(I .902'  - I [ .9 _+ 0.4 17.8 _+ 0.7 - 0 . 8 0 7  1 .644 

0 . 9 7 7 '  - 10.4 + 0.2 16.5 + (1.3 - 0 .031 - 1.476 

1 .060 '  - 8 .60  + 0 .09  14.6 + 0.2 - 0 .019  1.582 

1 .135 '  - 7 . 6 + 0 . 2  1 3 . 8 + 0 . 4  0 .112  1.386 

1.15 ~' - 8.2 _+ 0.2 14.9 + 0.3 0 . (170-4 .99  

1.35 j' - 6.0 _+ 0. I 13.('1 _+ 0.2 0 .097  8. I (1 

2 .74  ~' 0 .28  + 0 .03 6 .04  + 0 .04  0 .266  3(i).65 

5/' 2.5 -+0 .2  3 . 0 _ + 0 . 2  1.17 34 .38  

20  ~' 3.2 + 0 . 2  0.5 +_0.1 5 .08  588.8  

100 ~' 1.9 _+ 0. I 0 .07  _+ 0 .02  24 .4  4 0 7 2  

" T h e  r e d u c e d  p r e s s u r e  r a n g e  fo r  t he  

;' F r o m  Refs.  II  a n d  12. 

' F r o m  Ref. 10. 

d a t a .  



Linear Isotherm Rel~ularity of Dense Fluids 1043 

1.2 

1 

i i 

0 l 8 

0.6 

"2----, 0.4 

~- 0.2 
I 

0 

-0.2 

-0.4 

- 0 . 6  J i 
7.5 8 

(5 
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90':C (V) .  I l W C  (A) .  130:C 10) .  and 150"C (111. Data are from 

Ref 13. 

pressures here range from 0 to 8000 bar. The slopes and intercepts of the 
lines, along with their one standard deviation error limits are given in 
Table II. Good linearity is obtained in the range given, and the prediction 
of the linear isotherm regularity that all isotherms will pass through a 

common compressibility factor point [ 3 ] is also seen to hold. From Fig. 6 
this common point is at (P/Pc)~.xp.-- 8.05 and the prediction given from the 

Table I1. Reduced Intercept .4 and Slope B Parameters of ( Z -  1 )(r Q)2= ,q + B p p ~ ) :  lbr 
Liquid Nlercury" 

T ( "C ) .4 B ( I Ap t )'P ! 100 ~' 

30 l 0.18 __+ 0.0 ! 1.374 +- 0.001 1.6 ( 3.41 
50 9.50 + 0.01 1.290 +__ 0.001 1,6 ( 3.4 ) 
70 8.861 __+0.009 1.211 +__0.0{11 1.6133) 
90 8.314 +__0.009 1.143 +_0.001 1.6 13.31 

I 10 7.80 +_ 0.01 1.080 +_ 0.001 1.6 ( 3.2 ) 
130 7.36 +__ 0.02 1.025 + 0.002 1.6 13.2 ) 
150 6.95 +_ 0.01 0.973 __+ 0.002 1.6 ( 3.2 

" T h e  pressure range is 0 to 8000 bar  in all cases. Data are from Ref. 13. 
/, Absolute average percentage error in density at each temperature, along with the maximun~ 

e r r o r .  
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slopes and intercepts of the isotherms is (p/p~)~,,~c = A ~/B~ p~. = 8.06 _+ 0.04 
[ 3 ], an agreement within 0.1%. This is an indication of the accuracy of the 
representation of the temperature dependences of the slope and intercept 
by Eqs. (2) and (3). 

The absolute average percentage error in the densities at different tem- 
peratures is also given in Table II. This error is 1.6 % for the temperatures 
studied. In all isotherms, the largest deviation was related to the highest 
pressure (8000 bar). 

6. W A T E R  

In Fig. 7, the data of Grindley and Lind [ 13 ] have been used to plot 
a number of ( Z -  1 )(e/l:~.) 2 isotherms for liquid water against (P/Pc)'-. The 
range of pressures is again from 0 to 8000 bar. The isotherms show a 
degree of linearity, but systematic deviations from the straight line can be 
seen. Depending on the accuracy required, the representation of water data 
as (Z-1) ( r / re ) - "  linear against (p /pc)  2 can be considered as a satisfactory 
approximation. The correlation coefficient of the isotherms can be 
increased by using a smaller range of pressure in the plot. Thus in a more 
limited range of pressure, quantitative agreement can be obtained. 

Because of the systematic deviations in the isotherms, extrapolations 
of the lines do not meet at a single point as predicted by the common corn- 
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pressibility factor regularity, but over some region. The prediction from the 
slope and intercept parameters for the common compressibility point is still 
reasonable. 

The slopes and intercepts of the isotherms of water at different tem- 
peratures, along with their one standard deviation error limits, are given in 
Table lI1. The temperature dependence of the slope and intercept 
paraineters are plotted in Fig. 8. The linearity is satisfactory in both cases 
and the intercept of the slope parameter is close to zero. 

Table IlL Reduced Intercept A a n d  Slope B Parameters of 
( Z - 1 )(/' z',.)-" = ,4 + B( p,p< )2 Ibr Liquid Water" 

T ( ~ C )  ,4 B 

30 0.89fl +__ 0.005 0.0837 __+ 0.0004 
50 0.871 + 0.0(/5 0,0828 + 0.0005 
70 0.844 2 0.006 0.0814 + 0.0005 
90 0.81 I 2 0.005 0.0794 +__ 0.0005 

1 I 0 0,776 + 0.005 (/.0773 + 0.0005 
130 0.738 __+ 0.004 0.0750 __+ 0.0004 
150 0.701 + 0,004 0.0727 + 0.0004 

" T h e  pressure range is 0 to 8000 bar  in all cases. Data are from 

Rel[ 13. 

84(i 18 4+12 
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7. PARAMETERS IN THE EQUATION 

It appears that, to an extent, writing the equation of state of dense 
fluids in the form of Eq. (1) eliminates individual peculiarities of fluids. 
Thus a wide range of dense fluids, fi'om nonpolar, polar, quantum, metallic 
fluids, and even water, is satisfactorily described by a single equation of 
state. 

Providing a more rigorous theoretical basis for this equation still 
remains a challenge. Further affirmation of the general aspects of the 
proposed model can be obtained from studying the magnitudes of A~, A2, 
and B~ for different fluids and comparing these with the values expected 
flom the physical interpretation given for the parameters. 

The A 2 parameter represents the nonideal contribution to the thermal 
pressure in Eq. (5). As stated, this function is given for the van der Waals 
equation by b / [p (1 -  bp)] and is relatively constant near the minimum. 
For the Carnahan-Starling equation this function was given by Eq. (7), 
which, as shown in Fig. 1, is again relatively constant in the vicinity of the 
minimum. For the van der Waals fluid, the value of A ~ at the minimum is 
4b 2, and for the Carnahan-Starling equation it is 32.9~ 2, and, thus, propor- 
tional to d r'. In both cases, we get a squared excluded volume correlation 
for A, in the vicinity of the constant region, and it is reasonable to expect 
that for other fluids, this squared correlation with excluded volume will 
also hold. 

In Ref. 1, the intermolecular potential was written as (Ct,/r"-C,,,/r'"). 
After some manipulation, C .... and C, are ultimately related to A~ and B~, 
respectively. Thus by comparing A~ and B~ parameters for different fluids, 
one may obtain some indication of the relative magnitudes of their inter- 
molecular potential parameters. Considerations of the relative number of 
nearest neighbors will complicate this relation. This aspect of the parameters 
is implied in obtaining mixing and combination rules for mixtures [14]. 
A detailed study of the excluded volume correlation of A 2 and comparison of 
At and B~ parameters of different fluids will remain for future work. 

The comparison of the magnitudes of A ~ and B~ in each fluid leads to 
an interesting observation. One has 

m l Cm 
(9) 

B~ C,, 

which is of interest when considering the nature of the attractions and 
repulsions in a fluid. A special case is the Lennard-Jones fluid, for which 
the potential is 4e[(a/r)~2-(a/r) 6] and C,,,/C,,= 1, when the distance is 
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expressed in reduced form, i.e., r/a. From the simulations which gave the 
data in Figs. 2 and 4, two sets of A~ and B~ parameters can be obtained. 
In the absence of random differences in simulation results, these values 
should of course be the same. For the data of Fig. 2, the ratio A~/B~ is 
1.1 _+ 0.1, and for Fig. 4, the ratio is 0.92_+0.05. Both series of values for the 
Lennard-Jones fluid confirm the relation to a good extent. In Fig. 5, this 
aspect is indicated by the approximately equal magnitudes of the slopes of 
the two lines. 

When the molar volume v is reduced with the critical molar volume 
v,., it is straightforward to show that for a Lennard-Jones potential (or any 
inverse power potential whose repulsion and attraction differ by a six 
powers of r), Eq. (9) will be given as 

A f / ~ c ' ~  2 
___L~ (10) 
Bi \NAa3J 

In Table IV, the values of A~/B~ for nitrogen [1], methane [3], and 
mercury are compared with (VSNAa3) 2 from the Lennard-Jones potential 
[15, 16]. The agreements are not exact but close enough to show the 
plausibility of the relation. 

It is of interest to note that the density of the common compressibility 
factor point is predicted [3] to be at poz=A~/B~. The position of the 
common compressibility factor point can also be related to that of the 
common bulk modulus point [ 17]. Thus the position of these two points 
can also be used in comparison of the intermolecular potential parameters. 

Table IV. Values of tile Ratio A i,/Bt from tile Plots of 
( Z -  l l(v,'rr 2= A + B(p/p,:} 2 Along with [c~ / N.xa 3 ]2 Values 

Predicted from the Lennard Jones Potential 

2 
Fluid AI /B t  [t ,: /(N., .a 1] 

N, 9.0 4- 0.3" 8-07 I' 
CH4 7.33' 9.42 I' 
Hg 8.06 + 0.04 '/ 7.45" 

" Using data from Re[. I. 
~' From Rel: 15. 
' From Ref. 3. 
a From the present work. 
" Using c~=40.1 cm~-mol -i and data from Rel: 16. 
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8. DISCUSSION 

The range of fluids to which the linear isotherm regularity can be 
applied has been extended in this paper. As mentioned, the regularity can 
also be seen as a simple three-parameter equation of state. Considering the 
range of high densities for which this equation is valid, it can provide a 
complement to the other, more familiar equations of state which are 
appropriate in the lower density regions of the phase diagram. 

Having an analytical equation of state, of course, provides any number 
of applications, such as simple representation of experimental thermophysi- 
cal data, calculation of thermodynamic functions, and use in engineering 
calculations. 

The results obtained for hard-sphere and Lennard-Jones fluids show 
the general validity of the arguments proposed for the regularity. At the 
same time, it can be seen that expressing the behavior of these fluids in 
terms of the regularity can provide insight in regard to the physical factors 
operating in these systems. 

Of the two real systems studied in this paper, mercury obeys the 
regularity excellently. Thus the scope of the regularity may be extended to 
include liquid metals. 

For semiquantitative results, the regularity can be used for water, over 
a large pressure range. If the range of pressure is decreased, quantitative 
agreement can even be obtained for water. 

Systems to which the regularity could be applied are other molten 
metal systems, including molten alloys. Molten salts, and in general elec- 
trolytic solutions, have also yet to be studied. 
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